

Beijing-Dublin International College

SEMESTER I FINAL EXAMINATION - 2017/2018
--

School of INSERT SCHOOL

BDIC2002J Discrete Mathematics

Time Allowed: 95 minutes

Instructions for Candidates

All questions carry equal marks. The distribution of marks in the right margin shown as a percentage gives an approximate indication of the relative importance of each part of the question.

BJUT Student ID:	UCD Student ID:
I have read and clearly understand the	e Examination Rules of both Beijing University of
Technology and University College Dub	olin. I am aware of the Punishment for Violating the
Rules of Beijing University of Techno	ology and/or University College Dublin. I hereby
promise to abide by the relevant rules a	and regulations by not giving or receiving any help
during the exam. If caught violating the	rules, I accept the punishment thereof.
Honesty Pledge:	(Signature)

Instructions for Invigilators

Non-programmable calculators are permitted. No rough-work paper is to be provided for candidates. The Full Score of All Items of the Exam Paper

Item	1	2	3	4	5	6	7	Full		
Full score	14	16	14	14	14	14	14	100		

Obtained score

Question 1: Suppose that R is a reflexive relation on the set A. Suppose that for arbitrary $a,b,c\in A$, if $(a,b)\in R$, $(a,c)\in R$, then $(b,c)\in R$ holds.

Prove that R is an equivalence relation on A.

Obtained score

Question 2: A square number is defined to be the square of some integer (e.g. 1,4,9,16 are square numbers). Let $A = \{1,2,3,\cdots,24,25\}$ be the set of all positive integers no greater than 25. Let R be a relation on A, defined by

 $(x, y) \in R$ iff xy is a square number.

- (1) Prove that R is an equivalence relation on A.
- (2) List all different equivalence classes (whose cardinality is greater than one) of elements of $\cal A$.
- (3) Give the cardinality of A/R (don't have to show details)

Obtained score

Question 3: Compute the Principle Disjunctive Normal Form of

$$(P \land Q) \leftrightarrow R$$

Obtained score

Question 4: Compute the Prenex Normal Form of

$$\{\neg \exists x B(x) \lor \forall x \left[A(x) \to C(x,y) \right] \} \land \neg \forall y D(x,y)$$

Obtained score

Question 5: Let $G := \{(a,b)|a \in \mathbb{R} - \{0\}, b \in \mathbb{R}\}$. The operator * is defined by (a,b)*(c,d) = (ac,ad+b). Prove that (G,*) is a group.

Obtained score

Question 6: Let (G, *) be a group of order 50. Show that G has at least a subgroup of order 5.

Obtained score

Question 7: Prove that the complete bipartite graph $K_{3,3}$ is a non-planar graph.