Semester One of Academic Year (2015---2016) of BJUT 《Discrete Mathematics》

Module Code: BDIC2002J

Exam Paper A

Exam Instruction	s: <u>A</u>	nswer	any SI	X Item	s of all	Questi	ons			
Honesty Pledge:										
I have read	and c	learly	underst	and th	e Exar	ninatio	n Rule	s of B	eijing	University of
Technology and U	Jniversi	ty Coll	ege Du	ıblin an	nd am a	iware o	of the F	unishm	ent for	Violating the
Rules of Beijing U	Jnivers	ity of T	Technol	ogy an	d Unive	ersity C	College	Dublin	. I here	by promise to
abide by the releva	int rules	s and re	gulatio	ns by n	ot givir	g or re	ceiving	any he	lp durir	ng the exam. If
caught violating th	e rules,	I woul	d accep	t the pu	ınishme	ent there	eof.			
Pledger:			Class No:							
BJUT Student ID:			UCD Student ID							
Notes:	00000	00000			00000	00000				0000000000
The exam paper required to use to		-	-	_			e of 10	0 poin	ts. You	ı are
Instructions for	Cand	lidates	3							
Full marks will l	oe awa	rded f	or com	plete a	answei	to any	y six p	arts of	all que	estions.
Instructions for	Invig	ilator	S							
Candidates are a	llowed		-	_					_	examination.
	Total S	score o	i the E	Xaiii Fa	iper (1	or tead	iners t	ise omy	<i>(</i>)	Total
Item	1	2	3	4	5	6	7			Score
Full Score	16	17	16	17	17	17	17			
Obtained										

Score

Obtained score

Part 1:

(1) Let R be a transitive relation on a set A. Prove that $R \circ R$ is also a transitive relation.

(2) Let R be a reflexive relation on a set A. Suppose that for any $(a,b)\in R, (b,c)\in R$, we always have $(c,a)\in R$. Prove that R is an equivalence relation on A.

Obtained score

Part 2: Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and let R be a relation on the set $A \times A$ defined by (a, b)R(c, d) iff a + d = b + c

- (1) Prove that R is an equivalence relation
- (2) Compute the equivalence class $[(2,5)]_R$

Obtained score

Part 3:

(1) Compute the Principle Conjunctive Normal Form of

$$\neg ((P \rightarrow \neg Q) \rightarrow (Q \leftrightarrow \neg R)).$$

(2) Compute the Prenex Normal Form of

$$\forall y \Big(\exists z A(x, y, z) \Big) \lor \exists z B(x, z) \Big) \to \neg \exists x C(x, y)$$

Obtained score

Part 4: Let $\,G\,$ be a finite group. Suppose that $\,G\,$ is not a commutative group. Prove that the order of $\,G\,$ is greater than five.

Obtained score

Part 5: Let (G,*) be a group and let (H,*), (K,*) be two subgroup of (G,*). We denote HK, KH to be the following two sets:

$$HK = \{h * k | h \in H, k \in K\}, \qquad KH = \{k * h | k \in K, h \in H\}$$

Prove that (HK, *) is a subgroup of (G, *) if and only if HK = KH

Obtained score

Part 6: Let G be a simple bipartite graph. Denote $\,e\,$ to be the number of all edges of G and denote $\,v\,$ to be the number of all vertices of G . Prove that

$$e \le \frac{1}{4}v^2$$
 if v is even; $e \le \frac{1}{4}(v^2 - 1)$ if v is odd

Obtained score

Part 7: Let G be a simple connected planar graph. Denote e to be the number of all edges of G and denote v to be the number of all vertices of G. Suppose that

each face of G has at least $\,k\,$ edges. Prove that $\,e \leq \frac{k(v-2)}{k-2}$

1