

Honesty Pledge:

Beijing-Dublin International College

SEMESTER I FINAL EXAM	NATION - <mark>2017/2018</mark>			
BDIC2005J / BD	IC1033J			
Probability and S	Statistics			
HEAD OF SCHOOL	WU Wenying			
MODULE COORDINATOR	LIU Ling/ZHAO Xu			
Time Allowed: 90	minutes			
Instructions for C	andidates			
All questions carry equal marks. The distribution of ma	orks in the right margin shown as a percentage			
gives an approximate indication of the relative i	mportance of each part of the question.			
BJUT Student ID:	UCD Student ID:			
I have read and clearly understand the Examir	nation Rules of both Beijing University of			
Technology and University College Dublin. I am av	vare of the Punishment for Violating the Rules			
of Beijing University of Technology and/or University College Dublin. I hereby promise to abide				
by the relevant rules and regulations by not giving or receiving any help during the exam. If caugh				
violating the rules, I accept the punishment thereof.				

(Signature)

Instructions for Invigilators

Non-programmable calculators are permitted. No rough-work paper is to be provided for candidates. **Obtained** score

Question 1:

Vacancy (Each blank 3 marks)

(1) There are two events A and B, P(A)=0.6, P(B)=0.3. If A and B are mutually independent,

$$P(A \cup B) = 0 \cdot 1, \quad P(A-B) = 0 \cdot 1$$

$$(2) \quad X \sim P(\lambda), \quad P(X=0) = 1/2, \quad \lambda = 1/2 \cdot 1.$$

(3) Let
$$X_1, X_2, \dots, X_n = \{n > 2\}$$
 be a sample from $N(\mu, \sigma^2)$.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \cdot \sqrt{n} (\overline{X} - \mu) / \sigma \sim \frac{N(0, 1)}{n}, \quad \sqrt{n} (\overline{X} - \mu) / \sqrt{S^{2}} \sim \frac{1}{n}, \quad (n-1)S^{2} / \sigma^{2} \sim \frac{1}{n} \cdot \frac{1}{n}.$$

(4) Let X_1, \dots, X_n be a sample from $N(\mu, \sigma^2)$. μ and σ^2 are unknown parameters.

The confidence interval of
$$\mu$$
 with confidence level 95% is $\frac{\sqrt{3-100}}{\sqrt{3+100}} = \frac{\sqrt{3-100}}{\sqrt{3+100}} = \frac{\sqrt{3-100}}{\sqrt{3-100}} = \frac{\sqrt{3-100}}{\sqrt{3-$

Obtained score

boxes are provided by factory A; 3 boxes are provided by factory B; the others are provided by factory C. And we also know that the qualification rates for the three factories are 95%, 90% and 96% separately.

Find:

- (a) The qualification rate of the products in our warehouse;
- (b) Now we randomly take a product from a randomly chosen box. And we can see the selected product is qualified. What is the probability that it is provided by factory A? What is the probability that it is provided by factory B? What is the probability that it is provided by factory C?

 $||N|| \leq q_{N} a_{N} + ||\Gamma(N)|| \leq \frac{2}{10} \times p_{N} + \frac{3}{10} \times p_{N} + \frac{5}{10} \times p_{N} + \frac{5}{10} \times p_{N} = 0.94$ ||P(N)| = ||P(N)|| + ||P(N is qualification

score

Suppose, for a town, the electricity consumption per day X is a continuous random variable. And the density function of X is P(BW) = 0.554

$$f(x) = \left\{ egin{aligned} cx(1-x)^2, 0 < x < 1 \ 0, else \end{aligned}
ight.$$

Find:

The value of constant c;

$$P(0.5 < X < 1.3)$$
; $P(2.5 < X < 1.3) = \int_{2.5}^{1.3} f(x) = \int_{2.5}^{1} |2x|^2 dx = 1$
 $P(0.5 < X < 1.3)$

- (b)

(c)
$$E(X)$$
.

$$E(x) = \int_{0}^{1} h f(x) = \int_{0}^{1} |\chi h^{2}(1-h)|^{2} dh = |\chi \int_{0}^{1} (h^{2} - 2h^{3} + h^{4}) dh$$

$$= |\chi \int_{0}^{1} h f(x) = \int_{0}^{1} |\chi h^{2}(1-h)|^{2} dh = |\chi \int_{0}^{1} (h^{2} - 2h^{3} + h^{4}) dh$$

$$= |\chi \int_{0}^{1} h f(x) = \int_{0}^{1} |\chi h^{2}(1-h)|^{2} dh = |\chi \int_{0}^{1} (h^{2} - 2h^{3} + h^{4}) dh$$

$$= |\chi \int_{0}^{1} h f(x) = \int_{0}^{1} |\chi h^{2}(1-h)|^{2} dh = |\chi \int_{0}^{1} (h^{2} - 2h^{3} + h^{4}) dh$$

$$= |\chi \int_{0}^{1} h f(x) = \int_{0}^{1} |\chi h^{2}(1-h)|^{2} dh = |\chi h^{2}(1-h)|^{2} dh$$

$$= |\chi \int_{0}^{1} h f(x) = \int_{0}^{1} |\chi h^{2}(1-h)|^{2} dh = |\chi h^{2}(1-h)|^{2} dh$$

$$= |\chi h^{2}(1-h)|^{2} dh + |\chi h^{2}(1-h)|^{2} dh$$

$$= |\chi h^{2}(1-h)|^{2} dh + |\chi h^{2}(1-h)|^{2} dh$$

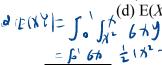
Obtained score

Ouestion 4: (14 marks)

Suppose that the joint probability density of two random variables X and Y are given by

$$f(x,y) = \begin{cases} c, x^2 \le y \le x \\ 0, else \end{cases}$$

- Find:
 (a) The value of constant c;
 (b) The marginal densities $f_X(x)$, $f_Y(y)$; $\int_{0}^{h} c \, dx \, dy = 1$ $\int_{0}^{h} c \, (h h) \, dh = 1$ $\int_{0}^{h} c \, (h h) \, dh = 1$ $\int_{0}^{h} c \, (h h) \, dh = 1$
- (c) Whether the two random variables *X* and *Y* are independent or not? (Please give your reason). $4 | f_{x}(t) = \int_{t}^{h} 6 dy = 6(t-1)$



 $|d|_{E(XY)} = \int_{X}^{\infty} \int_{X}^{A} \frac{dAy}{dA} \frac{dA}{dy}$ $= \int_{X}^{\infty} \int_{X}^{A} \frac{dAy}{dA} \frac{dAy}{dA}$ $= \int_{X}^{\infty} \int_{X}^{A} \frac{dAy}{dA} \frac{dAy}{dA} \frac{dAy}{dA}$ $= \int_{X}^{\infty} \int_{X}^{A} \frac{dAy}{dA} \frac{dAy}{dA} \frac{dAy}{dA} \frac{dAy}{dA}$ $= \int_{X}^{\infty} \int_{X}^{A} \frac{dAy}{dA} \frac{dAy}{dA}$

(1) L(A) =

(b) The maximum likelihood estimator θ^* of θ .

Obtained score

Question 6: (14 marks)

Suppose the nicotine content of a brand of cigarette follows a normal distribution. Now we randomly take 10 cigarettes, the average nicotine content X=18.6 milligram, the standard deviation S=2.4 milligram. Take the significant level $\alpha = 0.05$.

- (a) Can we accept $\mu=18$?
- (b) Can we accept $\sigma = 2$?

The t distribution table and the χ^2 distribution table

	, · · · · · · · · · · · · · · · · · · ·		
$t_9(0.025) = 2.2622$	$t_9(0.05) = 1.8331$	$t_{10}(0.025) = 2.2281$	$t_{10}(0.05) = 1.8125$
$\chi_9^2(0.025) = 19.023$	$\chi_9^2(0.05) = 16.919$	$\chi_9^2(0.975) = 2.700$	$\chi_9^2(0.95) = 3.325$
$\chi_{10}^2(0.025) = 20.483$	$\chi_{10}^2(0.05) = 18.307$	$\chi_{10}^2(0.975) = 3.247$	$\chi_{10}^2(0.95) = 3.940$

Hs: N=18 H.: N \$ 18

9: 7-14 N tro-1

 $P(-t_{N}|\frac{2}{2} \leq \frac{3/M}{5/M} \leq t_{M}|\frac{2}{2}) = 1-2$ $1e!ect domini \frac{|3-M_0|}{5/M} = t_{M}|\frac{2}{2}$ $\frac{3/M}{5/M} = \frac{18.6-18}{2.4/M0} = 2.790$ $t_{M} = \frac{18.6-18}{2.4/M0} = 2.790$

Appendix:

61 flo:
$$6^2 = 4$$
 flo: $6^2 \neq 4$
 $q = \frac{115^2}{6^{-2}} \times \chi_{n1}$
 $p = \frac{115^2}{6^{-2}} \leq C_1$ or $\frac{115^2}{6^{-2}} = C_2$
 $q = \frac{115^2}{6^{-2}} \leq C_1$ or $\frac{115^2}{6^{-2}} \leq \chi_{n1} = 0.75$

Reject region: $\left[\frac{(n-1)5^2}{6^{-2}} \leq \chi_{n1} + \frac{3}{2}\right] = \left[\frac{(n-1)5^2}{6^{-2}} \leq \chi_{n1} + \frac{3}{2}\right]$
 $\frac{(n-1)5^2}{6^2} = \frac{9 \times 2 \cdot 4^2}{4} = 12 \cdot 96$
 $\chi_p = \frac{(n-1)5^2}{6^2} \leq \left[\frac{1}{2} + \frac{3}{2} + \frac{3}{2}$