

Beijing-Dublin International College

SEMESTER	I	FINAL EXAMINATION – 2016/2017

School of Mathematics and Statistics BDIC1029J & BDIC1025J Maths 1 (Advanced Mathematics)

HEAD OF SCHOOL: Gary McGuire MODULE COORDINATOR: Yanru Ping OTHER EXAMINER: Yuehong Feng

Time Allowed: 90 minutes

Instructions for Candidates

Answer ALL questions. The marks that each question carry is written as shown.

BJUT Student ID: UCD Student ID:
I have read and clearly understand the Examination Rules of both Beijing University of
Technology and University College Dublin. I am aware of the Punishment for Violating the
Rules of Beijing University of Technology and/or University College Dublin. I hereby
promise to abide by the relevant rules and regulations by not giving or receiving any help
during the exam. If caught violating the rules, I accept the punishment thereof.
Honesty Pledge: (Signature)

Instructions for Invigilators

Non-programmable calculators are permitted. NO dictionaries are permitted. No rough-work paper is to be provided for candidates.

NOTE: Answer **ALL** questions.

Time allowed is 90 minutes.

The exam paper has 2 sections on 5 pages, with a full score of 100 marks.

You are required to use the provided **Examination Book** only for answers.

Section A: Fill-in-the-blank Questions

This section is worth a total of 80 marks, with each question worth 5 marks.

1. Given

$$\lim_{x \to 0} \frac{\sin x}{e^{ax} - 1} = 5,$$

evaluate $a = \underline{\hspace{1cm}}$.

2. Given

$$\lim_{x\to 0}\frac{\ln\left[1+\frac{f(x)}{\sin x}\right]}{2^x-1}=3,$$

find the limit

$$\lim_{x\to 0}\frac{f\left(x\right)}{x^{2}}=\underline{\hspace{1cm}}.$$

3. Find the limit

$$\lim_{x \to 0} \frac{e^{\sin x} - 1}{x} = \underline{\qquad}.$$

4. Find the limit

$$\lim_{x \to 0} \frac{\ln \cos x}{x^2} = \underline{\hspace{1cm}}.$$

5. Find the limit

$$\lim_{x \to 1} \left(\frac{4}{1 - x^4} - \frac{3}{1 - x^3} \right) = \underline{\hspace{1cm}}.$$

6. Find the limit

$$\lim_{n\to\infty} \sqrt[n]{3^n+1} = \underline{\qquad}.$$

7. Find the limit

$$\lim_{x \to 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 + \sin x}}{\sqrt{1 - x^3} - 1} = \underline{\hspace{1cm}}$$

8. Given

$$\lim_{x \to 1} \frac{x^2 + x + a}{x - 1} = b,$$

evaluate $a = \underline{\hspace{1cm}}$, and $b = \underline{\hspace{1cm}}$.

9. Let f(x) be a continuous function at the point x = 0, with

$$\lim_{x \to 0} \frac{f(x)}{x} = 5.$$

Evaluate $f'(0) = \underline{\hspace{1cm}}$.

10. Given

$$y = \cos^2 x,$$

find the higher order derivative $y^{(n)} = \underline{\hspace{1cm}}$.

11. Let f(x) be the function

$$f\left(x\right) = \frac{x^2}{x - 1}.$$

Find the higher order derivative $f^{(n)}(x) = \underline{\hspace{1cm}}$.

12. Consider two curves given by the equations

$$C_1: y = x^2 + ax + b,$$
 $C_2: 2y = -1 + xy^3.$

Suppose C_1 and C_2 contact at the point P(1, -1), and they have the same tangent line at P. Then a and b can be evaluated as $a = \underline{\hspace{1cm}}$, $b = \underline{\hspace{1cm}}$.

13. Given

$$\left\{ \begin{array}{l} x=\ln\left(1+t^2\right),\\ \\ y=\arctan t, \end{array} \right. t \text{ being a parameter, } t\in\mathbb{R},$$

evaluate

$$\frac{dy}{dx} = \underline{\qquad}, \qquad \frac{d^2y}{dx^2} = \underline{\qquad}.$$

14. Given

$$y = \frac{x - 5}{\sqrt[3]{x^2 + 2}},$$

find

$$\frac{dy}{dx} = \underline{\qquad}.$$

15. Let f(x) be a continuous function, with $f'(x) = \arctan x$. Supposing

$$y = f\left(\frac{3x - 2}{3x + 2}\right),\,$$

we can evaluate

$$\left. \frac{dy}{dx} \right|_{x=0} = \underline{\qquad}.$$

16. Let f(x) be the function

$$f\left(x\right) =\tan ^{3}x.$$

Find the differential df(x) =_____.

Section B: Extended Answer Questions

This section is worth a total of 20 marks, with each question worth 5 marks.

17. Let y(x) be the function

$$y = \frac{2^{\frac{1}{x}} - 1}{2^{\frac{1}{x}} + 1} + \sin(x - 1)\sin\frac{1}{x - 1}.$$

Find all the discontinuous point(s) of y(x), and determine the type of discontinuity for each point.

18. Consider a sequence $\{x_n\}$, $n=1,2,\cdots$, defined by a recursive formula

$$x_{n+1} = \sqrt{x_n + 2},$$
 $x_1 = \sqrt{2}.$

Prove that the limit $\lim_{n\to\infty} x_n$ exists, and find that limit.

19. Let C be the curve given by the function

$$y = \frac{-2x^2 + x - 5}{1 - 5x^2}.$$

Find the equation of the horizontal asymptote of the curve C.

20. Let f(x) be a continuous function over the interval [0,1], satisfying f(0) = f(1). Prove that there exists at least one number $c \in [0,1]$, such that

$$f(c) = f\left(c + \frac{1}{3}\right).$$