

Beijing-Dublin International College

SEMESTER	I	FINAL EXAMINATION – 2020/2021

School of Mathematics and Statistics BDIC1029J & BDIC1025J Maths 1 (Advanced Mathematics)

HEAD OF SCHOOL: Wenying WU
MODULE COORDINATOR: Yanru PING
OTHER EXAMINERS: Yuehong FENG, Rong YANG

Time Allowed: 90 minutes

Instructions for Candidates

Answer ALL questions. The marks that each question carry is written as shown.

BJUT Student ID: UCD Student ID:
I have read and clearly understand the Examination Rules of both Beijing University of
Technology and University College Dublin. I am aware of the Punishment for Violating the
Rules of Beijing University of Technology and/or University College Dublin. I hereby
promise to abide by the relevant rules and regulations by not giving or receiving any help
during the exam. If caught violating the rules, I accept the punishment thereof.
Honesty Pledge:(Signature)

Instructions for Invigilators

Non-programmable calculators are permitted. NO dictionaries are permitted. No rough-work paper is to be provided for candidates.

NOTE: Answer **ALL** questions.

Time allowed is 90 minutes.

The exam paper has 2 sections on 5 pages, with a full score of 100 marks.

You are required to use the provided Examination Book only for answers.

Section A: Gap-filling Questions

This section is worth a total of 75 marks, with each question worth 5 marks.

1. Evaluate

$$\lim_{t \to 0} \frac{\ln(1+t) - t}{t^2} = \underline{\qquad}.$$

2. Find the limit

$$\lim_{x \to \infty} \frac{\sin x}{x} = \underline{\qquad}.$$

3. Find the limit

$$\lim_{x \to 0} \frac{\sqrt[5]{x \arctan x + 1} - 1}{x^2} = \underline{\qquad}.$$

4. Let f(x) be the function

$$f(x) = \frac{1}{(x+1)(x+2)}.$$

Find the higher order derivative $f^{(2020)}(x) = \underline{\hspace{1cm}}$.

5. Let f(x) be the function

$$f\left(x\right) =\ln\sin x.$$

Find the differential $df(x) = \underline{\hspace{1cm}}$

6. Find the limit

$$\lim_{n \to \infty} \sqrt[n]{2^n + 1} = \underline{\qquad}.$$

7. Given

$$\lim_{x \to 0} \frac{\ln[1 + h(x)]}{\tan x} = 5,$$

find the limit

$$\lim_{x \to 0} \frac{h\left(x\right)}{x} = \underline{\hspace{1cm}}.$$

8. Given

$$\lim_{x \to \infty} \left(\frac{x^2}{1+x} + ax + b \right) = 0,$$

evaluate $a = \underline{\hspace{1cm}}$, and $b = \underline{\hspace{1cm}}$.

9. Given

$$\lim_{x \to 0} \frac{\tan x}{\sin ax} = 2,$$

evaluate $a = \underline{\hspace{1cm}}$.

10. Given

$$y = x \sin 2x$$
,

find the higher order derivative $y^{(2020)} = \underline{\hspace{1cm}}$.

11. If the following function is continuous at x=0,

$$f(x) = \begin{cases} (1 + \sin x)^{\frac{2}{x}}, & \text{if } x \neq 0; \\ A, & \text{if } x = 0, \end{cases}$$

try to determine the value of $A = \underline{\hspace{1cm}}$.

12. Given

$$\begin{cases} x = te^t, \\ e^t + e^y = 2, \end{cases}$$

t being a parameter, $t \in \mathbb{R}$,

evaluate

$$\frac{dy}{dx} = \underline{\hspace{1cm}}.$$

13. For

$$y = \left(\frac{x}{x+1}\right)^x,$$

try to find $\frac{dy}{dx} =$ _____.

14. Evaluate

$$\lim_{x \to 1} \left[\frac{1}{x - 1} - \frac{3}{(x^3 - 1)} \right] = \underline{\qquad}.$$

15. Given $f(x) = x + \sin x$, $x \in [0, 2\pi]$, the interval(s) of concave-up for f(x) is/are ______, and the point(s) of inflection is/are ______.

Section B: Extended Answer Questions

This section is worth a total of 25 marks. The marks of every question is as shown.

16. (8 marks) Suppose f(x) is a continuous function over the interval [0,2]. f(x) is derivable on the point (0,2), with evaluation f(2)=0.

Try to prove that there exists at least one number $\xi \in (0,2)$, such that

$$f'(\xi) = -\frac{3f(\xi)}{\xi}.$$

17. (10 marks) Given that a function

$$y = f(x) = ax^3 + bx^2 + cx + d$$

has an extreme value y = 0 occurring at x = 0, and (1, 1) is an inflection point on the curve y = f(x). Try to determine the values of a, b, c and d.

18. (*7 marks*) Prove

$$xe^x + ye^y \ge (x+y)e^{\frac{x+y}{2}}, \quad \forall x \ge y > -2.$$

USEFUL FORMULAE

$$\frac{d}{dx}C = 0$$

$$\frac{d}{dx}x^{\mu} = \mu x^{\mu-1}$$

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\tan x = \sec^2 x$$

$$\frac{d}{dx}\cot x = -\csc^2 x$$

$$\frac{d}{dx}\sec x = \sec x \tan x$$

$$\frac{d}{dx}\csc x = -\csc x \cot x$$

$$\frac{d}{dx}a^x = a^x \ln a$$

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{d}{dx}\arctan x = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

Glossary

Concave-up/down 凹/凸

Curve 曲线

Derivable 可导的

Derivative 导数

Differentiable 可微分的

Differential 微分

Discontinuity

不连续

Higher order derivative 高阶导数

Horizontal asymptote 水平渐近线

Infinitesimal 无穷小量

Interval

Local maximum 极大值

Logarithmic differentiation 对数求导法

Minimum 最小值

Monotonic increasing 单调递增

Point of inflection 拐点

Tangent line 切线