

Beijing-Dublin International College

SEMESTER I F	FINAL EXAMINATION – 2016/2017
School of	Mathematics and Statistics

BDIC1014J & BDIC1022J Linear Algebra

HEAD OF SCHOOL: Gary McGuire MODULE COORDINATOR: Xin LIU

Time Allowed: 90 minutes

Instructions for Candidates

Answer ALL questions. The marks that each question carry is written as shown.

BJUT Student ID: UCD Student ID:
have read and clearly understand the Examination Rules of both Beijing University of
Technology and University College Dublin. I am aware of the Punishment for Violating the
Rules of Beijing University of Technology and/or University College Dublin. I hereby
promise to abide by the relevant rules and regulations by not giving or receiving any help
during the exam. If caught violating the rules, I accept the punishment thereof.
Honesty Pledge: (Signature)

Instructions for Invigilators

Non-programmable calculators are permitted. NO dictionaries are permitted. No rough-work paper is to be provided for candidates.

SECTION A — MULTIPLE CHOICE QUESTIONS

In each question, choose at most one option.

Circle the preferred choice on the **Examination Book** provided.

This section is worth a total of 45 marks, with each question worth 3 marks.

- 1. For a linear system $\begin{cases} x y = -2, \\ y z = 2, \text{ determine the number of its solution(s).} \\ -x = 0. \end{cases}$
 - (a) unique solution; (b) two solutions;
- (c) inconsistent;
- (d) infinitely many solutions.
- 2. Which of the following is true for all invertible matrices A and B of the same size:

(a)
$$(A-I)(A^{-1}+I) = A-A^{-1}$$
;

(b)
$$(AB)^{-1} = A^{-1}B^{-1}$$
;

(c)
$$(A+B)(A-B) = A^2 - B^2$$
;

(d)
$$(A - B)^2 = A^2 - 2AB + B^2$$
.

3. Which of the following is true for all 3×3 matrices A and B:

(a)
$$\det(AB) = \det A + \det B$$
;

(b)
$$\det A^T = -\det A$$
;

(c)
$$\det(A+B) = \det A \det B$$
;

(d)
$$\det(-A) = -\det A$$
.

4. Given that

$$2 \begin{pmatrix}
 1 \\
 1 \\
 -1 \\
 0 \\
 3
\end{pmatrix} + \begin{pmatrix}
 2 \\
 1 \\
 3 \\
 1 \\
 -1
\end{pmatrix} - \begin{pmatrix}
 4 \\
 1 \\
 -1 \\
 3 \\
 1
\end{pmatrix} = \begin{pmatrix}
 0 \\
 2 \\
 2 \\
 -2 \\
 4
\end{pmatrix}$$

try to solve the unknowns (x, y, z) in the equation

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 3 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ -1 \\ 3 \\ 1 \end{pmatrix}$$

(a)
$$(2,1,-2)$$
;

(b)
$$(1,2,-2)$$
;

(c)
$$(-2,2,1)$$
;

(d)
$$(1, -2, 1)$$
.

5. Justify the following two steps of row operations acting on a matrix. (Notation below: $R_{\#} = \text{Row } \#$)

$$\begin{pmatrix}
0 & 1 & 2 & -1 \\
3 & 1 & 1 & -2 \\
4 & 0 & 7 & 4 \\
1 & 1 & 2 & 1
\end{pmatrix}
\stackrel{\textcircled{1}}{\Longrightarrow}
\begin{pmatrix}
1 & 1 & 2 & 1 \\
3 & 1 & 1 & -2 \\
4 & 0 & 7 & 4 \\
0 & 1 & 2 & -1
\end{pmatrix}
\stackrel{\textcircled{2}}{\Longrightarrow}
\begin{pmatrix}
1 & 1 & 2 & 1 \\
3 & 1 & 1 & -2 \\
0 & -4 & -1 & 0 \\
0 & 1 & 2 & -1
\end{pmatrix}$$

(a) Step ①:
$$R_1 \to R_1 + R_4$$
, $R_4 \to R_2 - 3R_4$; Step ②: $R_3 \to R_3 - 4R_1$.

(b) Step ①:
$$R_1 \leftrightarrow R_4$$
; Step ②: $R_3 \rightarrow R_3 - R_1 - R_2$.

(c) Step ①:
$$R_1 \leftrightarrow R_4$$
; Step ②: $R_3 \rightarrow R_3 - 4R_1$.

(d) Step ①:
$$R_1 \to R_1 + R_4$$
, $R_4 \to R_2 - 3R_4$; Step ②: $R_3 \to R_3 - R_1 - R_2$.

6. Justify the following two steps of row or column operations acting on a determinant.

(Notations below: $R_{\#} = \text{Row } \#, C_{\#} = \text{Column } \#$)

$$\begin{vmatrix} -1 & 3 & -2 \\ -1 & 1 & -2 \\ 0 & 1 & 3 \end{vmatrix} \xrightarrow{\textcircled{1}} \begin{vmatrix} 1 & 3 & 2 \\ 1 & 1 & 2 \\ 0 & 1 & -3 \end{vmatrix} \xrightarrow{\textcircled{2}} \begin{vmatrix} 0 & 2 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & -3 \end{vmatrix}$$

(a) Step ①:
$$C_1 \rightarrow -C_1$$
, $C_3 \rightarrow -C_3$; Step ②: $R_1 \rightarrow R_1 - R_2$.

(b) Step ①:
$$R_1 \to -R_1$$
, $R_2 \to -R_2$; Step ②: $R_1 \to R_1 - R_2$.

(c) Step ①:
$$C_1 \rightarrow -C_1$$
, $C_3 \rightarrow -C_3$; Step ②: $C_3 \rightarrow C_3 - 2C_1$.

(d) Step ①:
$$R_1 \rightarrow -R_1$$
, $R_2 \rightarrow -R_2$; Step ②: $C_3 \rightarrow C_3 - 2C_1$.

7. Find an elementary matrix to realize the following row reduction:

$$\left(\begin{array}{ccc} 2 & 1 & 2 \\ 1 & -1 & 1 \\ -1 & 2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 2 & 1 & 2 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

(a)
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
; (b) $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; (c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$; (d) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

8. Which of the following is a LU decomposition?

(a)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ & 1 \end{pmatrix}$$
;

(b)
$$\begin{pmatrix} 1 & -1 \\ -1 & 2 & -1 \\ & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 & 1 \\ & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ & 1 & -1 \\ & & 1 \end{pmatrix};$$

(c)
$$\begin{pmatrix} 1 & & \\ 4 & 1 & \\ 10 & 4 & 1 \end{pmatrix} = \begin{pmatrix} & & 1 \\ & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & \\ 1 & & \end{pmatrix};$$

(d) None of the above.

9. Given that a 3×3 matrix M has three distinct eigenvalues 2, 4, -5, compute det M.

(a)
$$-1$$
;

(c)
$$-40$$
;

10. Evaluate the determinant: $\det \begin{pmatrix} 4 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & -1 & 0 \\ 0 & 2 & 0 & 2 \end{pmatrix}$.

(b)
$$-32$$
;

(c)
$$-16$$
;

11. Determine the rank of the matrix $\begin{pmatrix} 4 & -4 & 12 & 8 \\ 1 & -1 & 3 & 2 \\ -1 & 1 & -3 & -2 \\ -3 & 3 & -9 & -6 \end{pmatrix}.$

(a)
$$1;$$

(c)
$$3;$$

12. Consider two equations:

$$A: 3x^2 + 2xy + 3y^2 = 8,$$

$$B: 7x^2 + 2\sqrt{3}xy + 5y^2 = 16.$$

Given that

$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
$$\frac{1}{2} \begin{pmatrix} 7 & \sqrt{3} \\ \sqrt{3} & 5 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix},$$

try to decide which of the following statements is correct.

- (a) A describes an ellipse, and B a hyperbola.
- (b) B describes an ellipse, and A a hyperbola.
- (c) A and B both describe ellipses, and they have the same shape, i.e., they share the same long and short semi-axes.
- (d) A and B both describe ellipses, but they have different shapes, i.e., they have different long and short semi-axes.
- **13.** Given three vectors $\mathbf{v}_1 = \begin{pmatrix} 1 & -1 & 2 \end{pmatrix}^T$, $\mathbf{v}_2 = \begin{pmatrix} 3 & 1 & -2 \end{pmatrix}^T$, $\mathbf{v}_3 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$, determine if \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are linearly independent or not, and choose a basis for the space they span.
 - (a) linearly independent, and a basis is $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\};$
 - (b) linearly dependent, and a basis is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$;
 - (c) linearly dependent, and a basis is $\{v_1, v_2\}$;
 - (d) linearly independent, and a basis is $\{\mathbf{v}_2, \mathbf{v}_3\}$.

- **14.** Cryptography: Scherlock Holmes, a great detective, wished to send a message to the police to report a murderer's name.
 - First, he used the following alphabet-number table

to encode a message into a string of 4 numbers, to form a column matrix M.

• Second, using two scramblers (i.e., two invertible matrices) A_1 and A_2

$$A_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

he encrypted M to be

$$A_2 A_1 M = M' = \begin{pmatrix} 20\\4\\10\\5 \end{pmatrix}. \tag{1}$$

Then the numbers $\{20, 4, 10, 5\}$ were safely transmitted to the police.

Now, try to use A_1 , A_2 and M' to recover the original message, to find out the name of the murderer.

15. In the above Question 14, can the scramblers A_1 and A_2 be replaced by the following matrices A'_1 and A'_2 , respectively?

$$A_1' = \left(egin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}
ight) \qquad \qquad A_2' = \left(egin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{array}
ight)$$

(a) Yes for both A'_1 and A'_2 ;

(b) Yes for A'_1 , but No for A'_2 ;

(c) No for A'_1 , but Yes for A'_2 ;

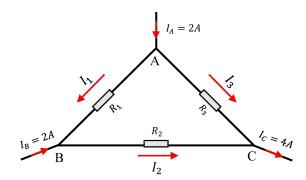
(d) No for both A'_1 and A'_2 .

SECTION B — EXTENDED ANSWER QUESTIONS

Write your answers on the Examination Book provided.

This section is worth a total of 55 marks. The marks of each question are as shown.

16. (10 marks) Electric circuit and current: Consider an electric circuit with three node points A, B and C, as shown below. The electric currents connecting to A, B and C are $I_A = 2A$, $I_B = 2A$ and $I_C = 4A$, measured in the unit Ampere (A). Let R_1 , R_2 and R_3 be three electric resistances, measured in the unit ohm (Ω). Let I_1 , I_2 and I_3 be the electric currents in between AB, BC and AC, respectively.



- (a) Compute I_1 , I_2 and I_3 , by making use of I_A , I_B and I_C .

 Can I_1 , I_2 and I_3 be uniquely determined?

 (4 marks)
- (b) Compute I_1 , I_2 and I_3 , when R_1 , R_2 and R_3 are evaluated as follows: (6 marks)

$$R_1 = 1\Omega,$$
 $R_2 = 1\Omega,$ $R_3 = 2\Omega.$

[*Hint: The Ohm's law is U = IR, with U — electric voltage, I — current, R — resistance.]

17. (8 marks) Let $M = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$.

- (a) Find the inverse of M by using the method of row operations. (2 marks)
- (b) Find the inverse of M by using the method of adjoint matrix. (3 marks)
- (c) Use the Cramer's rule to solve the linear system $\begin{cases} 2x +y = 4, \\ -x = 2. \end{cases}$ (3 marks)

18. (14 marks) Diagonalize $A = \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix}$, and evaluate A^5 .

- 19. (13 marks) Proofs & computations:
 - (a) Let λ be an eigenvalue of a matrix A, with eigenvector \mathbf{v} . Prove λ^m is an eigenvalue of A^m with eigenvector \mathbf{v} , where $m = 1, 2, 3, \cdots$.
 - (b) Consider a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Try to **prove**
 - (i) Its characteristic equation for eigenvalues is (3 marks)

 $\lambda^2 - (\operatorname{tr} A) \lambda + \det A = 0$ (where "tr" denotes the operation Trace).

(ii) The eigenvalues of A are real if and only if

 $\det A \le \left(\frac{\operatorname{tr} A}{2}\right)^2.$

(c) Evaluate a determinant

(4 marks)

(2 marks)

$$\det \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}.$$

20. (10 marks) (Matrix realization of differential operator)

Sample: In order to realize a cyclic permutation of matrix components like $\begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} \longrightarrow \begin{pmatrix} x \\ x^2 \\ x^3 \\ 1 \end{pmatrix}$,

we can take benefit of the following matrix left-multiplication:

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} = \begin{pmatrix} x \\ x^2 \\ x^3 \\ 1 \end{pmatrix}.$$

Using the idea of the above sample, try to:

(a) find a matrix A_1 to realize the functioning of the differential operator $\frac{d}{dx}$ in the sense of the following operation:

$$\frac{d}{dx} \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} = A_1 \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix}.$$

[*Hint: Make use of the derivative formula $\frac{d}{dx}x^n = nx^{n-1}$.] (5 marks)

(b) find three matrices A_2 , A_3 , A_4 to realize the operators $\frac{d^2}{dx^2}$, $\frac{d^3}{dx^3}$, $\frac{d^4}{dx^4}$, respectively. Namely,

$$\frac{d^2}{dx^2} \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} = A_2 \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix}. \qquad \frac{d^3}{dx^3} \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} = A_3 \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix}. \qquad \frac{d^4}{dx^4} \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} = A_4 \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix}.$$

What is the relationship between A_1 and the other A_2 , A_3 , A_4 ? (5 marks)

Glossary

Unique
唯一

Inconsistent 无解,不相容

Unknowns 未知数

Elementary matrix 初等矩阵

Distinct 互不相同的

Eigenvalue 本征值

Eigenvector 本征矢量

Rank (矩阵的) 秩

Ellipse 椭圆

Hyperbola 双曲线

Long (short) semi-axis 长 (短) 半轴

Linear independent 线性独立

Basis 基

Cryptography 密码学

Alphabet 字母表

Encode 编码

Scrambler 加密矩阵

Encrypt 加密

Current 电流

Resistance 电阻

Ampere 安培

Inverse (矩阵的)逆

Diagonalization 对角化

Characteristic equation 示性方程

Differential operator 微分算子

Cyclic permutation 轮换;循环置换

Left-multiplication 左乘(一个矩阵)

Functioning 功能