

Beijing-Dublin International College

SEMESTER I RE	ESIT EXAMINATION – 2016/2017
School of N	Mathematics and Statistics
BDIC1014J & B	BDIC1022J Linear Algebra
	SCHOOL: Gary McGuire COORDINATOR: Xin LIU
Time /	Allowed: 90 minutes
Instruc	etions for Candidates
Answer ALL questions. The mark	ks that each question carry is written as shown.

BJUT Student ID: _____ UCD Student ID: _____

I have read and clearly understand the Examination Rules of both Beijing University of Technology and University College Dublin. I am aware of the Punishment for Violating the Rules of Beijing University of Technology and/or University College Dublin. I hereby promise to abide by the relevant rules and regulations by not giving or receiving any help during the exam. If caught violating the rules, I accept the punishment thereof.

Honesty Pledge:	(Sid	gnature)
rioniooty riougo.	 () :	giiatai o	,

Instructions for Invigilators

Non-programmable calculators are permitted. NO dictionaries are permitted. No rough-work paper is to be provided for candidates.

1. (30 marks) Consider the following system of linear equations:

$$\begin{cases} x & -2z = 1, \\ 2x + y & -z = 2, \\ -x & +z = -1. \end{cases}$$

(a) Use the method of row operations (初等行变换) to solve this linear system.

(b) Use the method of $\mathbf{x} = A^{-1}\mathbf{b}$ (逆矩阵方法) to solve this system.

(c) Use the method of Cramer's rule (克莱姆法则) to solve this system.

2. (15 marks) True & False (判断对错,注明理由):

Judge the correctness of the following statements (by circling the given words TRUE or FALSE), and justify your choice (i.e., explain your reason to do the choice).

(a) Let A be a 3×3 matrix. Then

TRUE FALSE

$$\det(-A) = \det A.$$

Reason:

(b) Let A and B be two $n \times n$ matrices.

TRUE FALSE

$$(A+B)(A-B) = A^2 - B^2.$$

Reason:

(c) Let A be an $n \times n$ invertible matrix (可逆矩阵), and I the $n \times n$ identity (恒等矩阵). **TRUE FALSE**

$$(A - I) (A^{-1} + I) = A - A^{-1}.$$

Reason:

(d) Let A be a matrix and λ its eigenvalue(本征值), with ${\bf v}$ as the corresponding eigenvector(本 征矢量), i.e.,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Then λ^m is an eigenvalue of the matrix A^m , with $m=1,2,3,\cdots$. TRUE FALSE Reason:

3. (35 marks) Diagonalize the matrix (对角化矩阵)

$$A = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{array}\right)$$

and compute A^{2017} .

Version: Resit Exam (Semester 1, Year 2016–2017)

BDIC1014J & BDIC1022J Linear Algebra

4. (20 marks) Fill in the blanks.

(a) Find the appropriate elementary matrix (初等矩阵) to realize the type-I row operation (第 一类行变换)

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 4 \\ 3 \\ 2 \end{pmatrix}.$$

(b) Find the appropriate elementary matrix to realize the type-II row operation (第二类行变换)

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 2 \\ 9 \\ 4 \end{pmatrix}.$$

(c) Find the appropriate elementary matrix to realize the type-III row operation (第三类行变换)

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 5 \\ 3 \\ 4 \end{pmatrix}.$$